waveshare Modbus RTU Analog Input 8CH User Manual
waveshare Modbus RTU Analog Input 8CH

Modbus RTU Analog Input 8CH

gafereview

Nkọwa ngwaike

  • Each channel can be individually configured for its range, making it more convenient for users.
    “AIN+” is the positive input, and “AIN-” is the negative input. The module supports both differential and single-ended input. When used as a single-ended input, “AIN-” is connected to the ground.
    Nkọwa ngwaike
    Na-akwado voltage and current simultaneous acquisition
    Note: When inputting the different powers, it is important to connect the ground wire to establish a common ground. Otherwise, the collected data may be inaccurate.
  • Opening the device case, you can see jumpers are near the device terminals, corresponding to the eight channels Al1~Al8. You need to select the jumper mode based on the measurement signal; otherwise, the measurement data will be inaccurate.
    • Mgbe ị na-atụ voltage signals, the jumper wire for the corresponding channel should be disconnected.
    • When measuring current signals, the jumper wire for the corresponding channel should be connected. Nkọwa ngwaike
  • Modbus RTU Analog Input 8CH defaults to current mode with the jumper wire connected. Modbus RTU Analog Input 8CH (B) defaults to voltage mode with the jumper wire disconnected.

Version Comparision

  • Currently, there are two versions of the analog input series, one defaults to current input, and the other defaults to voltagntinye.
  • Modbus RTU Analog Input 8CH
    Supports four ranges (configurable) 0-5V/1-5V 0-20mA (default) /4-20mA
    Nkọwa ngwaike
  • Modbus RTU Analog Input 8CH (B)
    Supports four ranges (configurable): 0-10V (default)/2-10V 0~20mA/4~20mA
    Nkọwa ngwaike
  • Modbus RTU Analog Input 8CH Configurable range
    Nkọwa ngwaike
  • Modbus RTU Analog Input 8CH (B) Configurable rangeNkọwa ngwaike
    Ụdị Modbus RTU Analog Input 8CH Modbus RTU Analog Input 8CH (B)
    Ụdị ndabara 8-ch current mode, 0~20mA 8-ch voltage mode, 0~10V
    Oke nha 0~5V/1~5V0~20mA/4~20mA 0~10V/2~10V0~20mA/4~20mA
    Mkpebi 12-bit 12-bit
    Ugbu a sampling iguzogide 249Ω 499Ω
    arụ ọrụ amplifier ratio 32.4/49.9 10/32.4
    Ọwa 8-AI 8-AI

    Each version has five range modes from 0 to 4.

    Ụdị Modbus RTU Analọg Ntinye 8CH Modbus RTU Analọg Ntinye 8CH (B)
    0 0~5V voltage mode 0~10V voltage mode
    1 1~5V voltage mode 2~10V voltage mode
    2 0~20mA current mode 0~20mA current mode
    3 4~20mA current mode 4~20mA current mode
    4 4096-scale code mode 4096-scale code mode
  • The scale code is the data collected by the AD converter and needs to undergo a linear transformation to obtain voltage or current data. The conversion formula is as follows.
    • Voltage = Scale Code 3300/4095/Operational Amplifier Ratio
    • Ugbu a = Voltage/Sampling Resistor

Njikọ ngwaike

  • Connect the USB TO 485 to the target boards via cables, A-A and B-B connected as shown below:
    Njikọ ngwaike

Nnwale ngwanrọ

SSCOM Serial Port Debugging Assistant

  • Budata SSCOM serial port debugging assistant and open it on the computer. Open the corresponding port number, set the baud rate as 9600, and select SendHEX and HEXshow.
    Send the following command, and it will return the 8-channel analog input data normally.
    01 04. 00 00 00 08 F1 CC
    Nnwale ngwanrọ
  • If you need to send other commands, choose SendHEX. For checksum validation, select  ModbusCRC16. After entering the first six bytes of the command, clicking SEND will automatically add the CRC check code. For example, send the following command, you can set channel 1 to 4-20mA current input mode.
    Nnwale ngwanrọ
  • For more control commands, you can refer to the development protocol.

Modbus Poll Software

  • It is not convenient to use the SSCOM software for observing the data, you can select Modbus Poll software to read the data. Download and install the Modbus Poll software.
  • Open the software, select Setup -> Read/Write Definition. Select the actual device address for Slave ID, 04 Read Input Registers (3x) for Function, and 8 channels for Quantity, and click “OK” to confirm.
    Nnwale ngwanrọ
  • Select Connection->Connect…, choose the corresponding serial port, set the baud rate to 9600, and select 8 Data bits and None Parity. Click OK to connect.
    Nnwale ngwanrọ
  • After successful connection, it can display the analog input data for channels 1-8.
    Nnwale ngwanrọ
  • Modbus RTU Analog Input 8CH (A) displays the current by default, and the unit is uA.
    Modbus RTU Analog Input 8CH (B) displays the voltage by default, and the unit is mV.
  • Họrọ File-> New to create a new window, select Setup->Read/Write Definition. Select the actual device address for Slave ID, 16 Write Multiple Registers for Function, Hex for Address Mode, 1000 for Address, and 8 channels for Quantity, and then click “OK” to confirm.
    Nnwale ngwanrọ
  • The new window 2 can set up the measuring modes for different channels. For example, you can set the channel 1 mode as 2, that is, 0~20mA current mode. And channel 1 of the window 1 will display the current.
    Note: The internal jumper wires should be modified when changing the current and voltage mode, otherwise, the measurement data will not be accurate.
    Nnwale ngwanrọ

Nnwale ngosi
Note: RS485 can not be directly connected to the serial port of the Raspberry Pi, otherwise it may burn the device, you need to add 485 level conversion. For Raspberry Pi, it is recommended to work with the RS485 CAN HAT module. For NUCLEO-F103RB and Arduino, it is recommended to work with the RS485 CAN Shield module.

Raspberry Pi

Open the Raspberry Pi terminal and enter the following command to enter the configuration interface

sudo raspi-config
Select Interfacing Options -> Serial, disable shell access, and enable the hardware serial port
Raspberry Pi

Then restart Raspberry Pi:

sudo reboot

Mepee /boot/config.txt file, find the following configuration statement to enable the serial port, if not, you can add it to the end of the file.
enable_uart-1

For Raspberry Pi 3B users, the serial port is used for Bluetooth and needs to be commented out:
#dtoverlay-pi3-miniuart-bt

Then restart Raspberry Pi:

sudo reboot

Insert the RS485 CAN HAT into the Raspberry Pi, and connect the Modbus RTU Relay module to the RS485 CAN HAT through A and B.
If you are using other 485 devices, make sure to connect A-A, B-B.
Run the following commands to run the demo:

sudo apt-get install unzip.
sudo apt-nweta wụnye python3-pip
pip install modbus_tk
wget https://files.waveshare.com/wiki/Modbus RTU-Analog-Input-8CH/Modbus RTU Ana log_Input_Code.zip
unzip Modbus_RTU_Analog_Input_Code.zip

cd Modbus_RTU_Analog_Input_Code/Python3
sudo python3 modbus.py

NKM 32

Mara: The STM32 demo is based on the NUCLEO-F103RB and RS485 CAN Shield module.

  1. Budata Demo, find the STM32 project file Modbus.uvprojx in the path Modbus_RTU_Analog_Input_Code\STM32\MDK-ARM, and double-click to open the STM32 project file. Note that you should ensure Keil5 software is installed on your computer before using it.
    NKM 32
  2. Connect the STM32 to a computer via the STM32 download and debug probe. Compile and download the program to the development board.
    NKM 32
  3. Install the RS485 CAN Shield module on the STM32. Connect the RS485_A on the RS485 CAN Shield module to the RS485_A on the Modbus RTU Analog Input 8CH via a wire, and connect the RS485 B on the RS485 CAN Shield module to the RS485 B on the Modbus RTU Analog Input 8CH via a wire. Then power on the Modbus RTU Analog Input 8CH and the STM32 sequentially.
  4. After the program runs normally, you can observe through the serial port assistant that the device prints the collected results
    NKM 32

Arduino

Mara: The Arduino demo is based on the UNO PLUS and RS485 CAN Shield module.

  1. Download Demo, find the Arduino project file Modbus_RTU_Analog_Input.ino in the path Modbus_RTU_Analog_Input_Code\Arduino\Modbus_RTU_Analog_Input, and double-click to open the Arduino project file. Note that you should ensure Arduino IDE software is installed on your computer before using it.
    Arduino
  2. Connect the Arduino to the computer via a USB cable. In the Arduino IDE software, select the Arduino board model under Tools-> Board. Choose the COM port that the Arduino is connected to under Tools->Port.
  3. After seeing the prompt to connect to the computer in the lower right corner, click to compile and flash the program, and wait for the flashing to complete.
    Arduino
  4. Install the RS485 CAN Shield module on the Arduino. Connect the RS485_A on the RS485 CAN Shield module to the RS485_A on the Modbus RTU Analog Input 8CH via a wire, and connect the RS485_B on the RS485 CAN Shield module to the RS485_B on the Modbus RTU Analog Input 8CH via a wire. Then power on the Modbus RTU Analog Input 8CH and the Arduino sequentially.
  5. After the program runs normally, you can observe through the serial port assistant that the device prints the collected results
    Arduino

Development Protocol V2

Usoro Okwu Mmalite

Ọrụ Koodu Nkọwa
03 Gụọ ndekọ njide
04 Gụọ ndekọ ntinye
06 Dee ndekọ njide otu
10 Write multiple holding register

Register Address Introduction

Address (HEX) Address storage content Debanye aha uru Ikike Modbus Ọrụ Koodu
3×0000…… 3×0007 Channels 1~8 input data Read values as unsigned hexadecimal Gụọ 0x04
4×1000…… 4×1007 Channels 1~8 data types 0x0000~0x0004 five ranges Gụọ/dee Ugbokodo
4×2000 UARTParameter The high eight bits indicate the parity mode: 0x00~0x02The low eight bits indicate the baud rate mode: 0x00~0x07 Gụọ/dee 0x03, 0x06
4×4000 Adreesị ngwaọrụ Directly store Modbus address Device address: 0x0001-0x00FF Gụọ/dee 0x03, 0x06
4×8000 Ntanụ ngwanrọ Converting to decimal and then shifting the decimal point two places to the left will represent the software version0x0064 = 100 = V1.00 Gụọ 0x03

Operation Command Introduction

Read Analog Input Command

Koodu izipu: 01 04 00 00 00 08 F1 CC

Ubi Nkọwa Rịba ama
01 Adreesị ngwaọrụ 0x00 indicates the broadcast address, 0x01-0xFF indicates the device address
04 04 command Gụọ ndekọ ntinye
00 00 Debanye aha mmalite 0x0000 – 0x0007 correspond to 1~8 input channels
Adreesị
00 08 Nọmba ndebanye aha The number of the registers to be read, which must not exceed the maximum number of the channels
F1 CC MBA 16 The CRC16 checksum of the first 6 bytes of data

Koodu nloghachi: 01 04 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 55 2C

Ubi Nkọwa Rịba ama
01 Adreesị ngwaọrụ 0x00 indicates the broadcast address, 0x01-0xFF indicates the device address
04 04 command Read input register
10 Byte Number Data length
00 00…… 00 00 Deba aha data Indicates the values of analog inputs from channels 0 – 7An unsigned 16-bit identifier for a channel, with the higher bits first and the lower bits last The data range is determined by the output data type
552C MBA 16 The CRC16 checksum of the first 6 bytes of data

Maka exampLe: [Address 1 device] Read 1-8 channels 01 04 00 00 00 08 F1 CC
Read 1 channel 01 04 00 00 00 01 31 CA
Read 2 channel 01 04 00 01 00 01 60 DA
Read 3-5 channels 01 04 00 02 00 03 11 св

Read Channel Data Type Command

Koodu izipu: 01 03 10 00 00 08 40 CC

Field Nkọwa Rịba ama
01 Adreesị ngwaọrụ 0x00 indicates the broadcast address, 0x01-0xFF indicates the device address
03 03 Iwu Gụọ ndekọ njide
10 00 Deba aha mmalite Adreesị 0x1000 – 0x1007 correspond to 1~8 input channels
00 08 Nọmba ndebanye aha The number of the registers to be read, which must not exceed the maximum number of the channels
40CC MBA 16 The CRC16 checksum of the first 6 bytes of data

Koodu nloghachi: 01 03 10 00 02 00 02 00 02 00 02 00 02 00 02 00 02 00 02 09 C3

Ubi Nkọwa Rịba ama
01 Adreesị ngwaọrụ 0x00 indicates the broadcast address, 0x01-0xFF indicates the device address
03 03 Iwu Read holding register
10 Byte Number The number of all bytes of the returned status information
00 02…… 00 02 Ụdị data Indicates data types of 0-7 channels, 0x0000~0x0004 represents five ranges 0x0000: Range 0~5V, output range 0~5000 or 0~10000, unit mV;0x0001: Range 1~5V, output range 1000~5000 or 2~10V, output range 2000~10000, unit mV;0x0002: Range 0~20mA, output range 0~20000, unit uA; 0x0003: Range 4~20mA, output range 4000~20000, unit uA;0x0004: Direct output of numerical code, output range 0~4096, requires linear conversion to obtain actual measured voltage na ugbua;
09C3 MBA 16 The CRC16 checksum of the first 6 bytes of data

Maka example: [Address 1 device]
Read data types for channels 1-8: 01 03 10 00 00 08 40 CC
Read data type for channel 1: 01 03 10 00 00 01 80 CA
Read data type for channel 2: 01 03 10 01 00 01 DI CA
Read data type for channels 3-5: 01 03 10 02 00 03 АО СВ

Set Single-channel Data Type Command
Koodu izipu: 01 06 10 00 00 03 CD OB

Ubi Nkọwa Rịba ama
01 Device Address 0x00 indicates the broadcast address, 0x01-0xFF indicates the device address
06 06 Iwu Write single register
10 00 Register Start Address 0x1000 – 0x1007 correspond to data types of 1~8 input channels
0003 Channel Data Type Channel data types, 0x0000~0x0004 represents five ranges 0x0000: Range 0~5V, output range 0~5000 or 0~10000, unit mV;0x0001: Range 1~5V, output range 1000~5000 or 2~10V, output range 2000~10000, unit mV;0x0002: Range 0~20mA, output range 0~20000, unit uA; 0x0003: Range 4~20mA, output range 4000~20000, unit uA;0x0004: Direct output of numerical code, output range 0~4096, requires linear conversion to obtain actual measured voltage na ugbua;
CD 0B MBA 16 The CRC16 checksum of the first 6 bytes of data

Koodu nloghachi: 01 06 10 00 00 03 CD 0B

Ubi Nkọwa Rịba ama
01 Adreesị ngwaọrụ 0x00 indicates the broadcast address, 0x01-0xFF indicates the device address
06 06 Iwu Dee otu ndekọ
10 00 Channel Data Type Address 0x1000 – 0x1007 correspond to data types of 1~8 input channels
00 03 Channel Data Type Channel data type, 0x0000~0x0004 represents five ranges
CD 0B MBA 16 The CRC16 checksum of the first 6 bytes of data

Maka exampLe: [Address 1 device]

Set data type to 0-20mA for channel 1: 01 06 10 00 00 02 ОС СВ
Read data type 4-20mA for channel 2: 01 06 10 01 00 03 9C CB

Set Multi-channel Data Type Command

Koodu izipu: 01 10 10 00 00 08 10 00 03 00 03 00 03 00 03 00 03 00 03 00 03 00 03 91 2B

Ubi Nkọwa Rịba ama
01 Adreesị ngwaọrụ 0x00 indicates the broadcast address, 0x01-0xFF indicates the device address
10 10 Iwu Dee ọtụtụ ndekọ
10 00 Deba aha mmalite Adreesị 0x1000 – 0x1007 correspond to data types of 1~8 input channels
00 08 Nọmba ndebanye aha Set register number, which must not exceed the maximum number of the channels
10 Nọmba Byte Set the number of bytes to be output
00 03…… 00 03 Iwu Corresponding to data types of 0-7 channels, 0x0000~0x0004 represents five ranges0x0000: Range 0~5V, output range 0~5000 or 0~10000, unit mV; 0x0001: Range 1~5V, output range 1000~5000 or 2~10V, output range 2000~10000, unit mV;0x0002: Range 0~20mA, output range 0~20000, unit uA; 0x0003: Range 4~20mA, output range 4000~20000, unit uA;0x0004: Direct output of numerical code, output range 0~4096, requires linear conversion to obtain actual measured voltage na ugbua;
912B MBA 16 The CRC16 checksum of the first 6 bytes of data

Koodu nloghachi: 01 10 10 00 00 08 C5 0F

Ubi Nkọwa Rịba ama
01 Device Address 0x00 indicates the broadcast address, 0x01-0xFF indicates the device address
10 10 Iwu Write multiple registers
10 00 Register Start Address 0x1000 – 0x1007 correspond to data types of 1~8 input channels
00 08 Register Number Set register number, which must not exceed the maximum number of the channels
C5 0F MBA 16 The CRC16 checksum of the first 6 bytes of data

Maka exampLe: [Address 1 device]

Read data type 4-20mA for channels 1-8: 01 10 10 00 00 08 10 00 03 00 03 00 03 0 0 03 00 03 00 03 00 03 00 03 91 2B
Read data type 1-5V for channels 3-5 01 10 10 02 00 03 06 00 01 00 01 00 01 BE 4A

Set Baudrate Command
Koodu izipu: 00 06 20 00 00 05 43 D8

Ubi Nkọwa Rịba ama
00 Adreesị ngwaọrụ 0x00 indicates the broadcast address, 0x01-0xFF indicates the device address
06 06 command Set the baud rate and device address
20 00 Ndebanye aha iwu 0x2000: set the baud rate; 0x4000: set the device address
00 Parity Method 0x00: no parity, 0x01: even parity; 0x02: odd parity
05 Baud Rate Value Correspondence of baud rate values 0x00: 48000×01: 96000×02: 192000×03: 384000×04: 576000×05: 1152000×06: 1280000×07: 256000
43 D8 MBA 16 The CRC16 checksum of the first 6 bytes of data

Koodu nloghachi: 00 06 20 00 00 05 43 D8

Ubi Nkọwa Rịba ama
00 Device Address 0x00 indicates the broadcast address, 0x01-0xFF indicates the device address
06 06 command Set the baud rate and device address
20 00 Command Register 0x2000: set the baud rate; 0x4000: set the device address
00 Parity Method 0x00: no parity, 0x01: odd parity; 0x02: even parity
05 Ọnụego Baud Correspondence of baud rate values 0x00: 48000×01: 96000×02: 192000×03: 384000×04: 576000×05: 1152000×06: 1280000×07: 256000
43 D8 MBA 16 The CRC16 checksum of the first 6 bytes of data

Maka exampLe: [Address 1 device]

Set the baud rate as 4800: 00 06 20 00 00 00 83 DB
Set the baud rate ав 9600: 00 06 20 00 00 01 42 18
Set the baud rate as 115200: 00 06 20 00 00 05 43 D8

Set Device Address Command

Koodu izipu: 00 06 40 00 00 01 5C 1B

Ubi Nkọwa Rịba ama
00 Device Address 0x00 indicates the broadcast address, 0x01-0xFF indicates the device address
06 06 command Set the baud rate and device address
40 00 Command Register 0x2000: set the baud rate; 0x4000: set the device address
00 01 Device Address Set the device address, 0x0001-0x00FF
5C 1B MBA 16 The CRC16 checksum of the first 6 bytes of data

Koodu nloghachi: 00 06 40 00 00 01 5C 1B

Ubi Nkọwa Rịba ama
00 Device Address 0x00 indicates the broadcast address, 0x01-0xFF indicates the device address
06 06 command Set the baud rate and device address
40 00 Command Register 0x2000: set the baud rate; 0x4000: set the device address
00 01 Device Address Set the device address, 0x0001-0x00FF
5C 1B MBA 16 The CRC16 checksum of the first 6 bytes of data

Maka exampLe: [Address 1 device] Set the device address as 0x01:00 06 40 00 00 01 5C 1B
Set the device address as 0x02:00 06 40 00 00 02 10 1A
Set the device address as 0x03:00 06 40 00 00 03 DD DA

Read Device Address Command
Koodu izipu: 00 03 40 00 00 01 90 18

Ubi Nkọwa Rịba ama
00 Device Address 0x00 indicates the broadcast address, 0x01-0xFF indicates the device address
03 03 Iwu Read the device address
40 00 Command register 0x4000: read the device address, 0x8000: read software version
00 01 Byte Number Fixed 0x0001
90 1B MBA 16 The CRC16 checksum of the first 6 bytes of data

Koodu nloghachi: 01 03 02 00 01 79 84

Ubi Nkọwa Rịba ama
01 Device Address 0x00 indicates the broadcast address, 0x01-0xFF indicates the device address
03 03 Iwu Read the software version and device address
02 Byte Number The number of bytes returned
00 01 Device Address Set the device address, 0x0001-0x00FF
79 84 MBA 16 The CRC16 checksum of the first 6 bytes of data

Maka exampLe: [Address 2 device] Send: 00 03 40 00 00 01 90 18
Return: 02 03 02 00 02 7D 85
// Address 0x02

Read Software Version Command
Koodu izipu: 00.03 80 00 00 01 AC 18

Ubi Nkọwa Rịba ama
00 Device Address 0x00 indicates the broadcast address, 0x01-0xFF indicates the device address
03 03 Iwu Read the software version and device address
80 00 Command register 0x4000: read the device address, 0x8000: read software version
00 01 Byte Number Fixed 0x0001
AC 1B MBA 16 The CRC16 checksum of the first 6 bytes of data

Koodu nloghachi: 01 03 02 00 64 B9 AF

Ubi Nkọwa Rịba ama
01 Device Address 0x00 indicates the broadcast address, 0x01-0xFF indicates the device address
03 03 Iwu Read the software version and device address
02 Byte Number The number of bytes returned
00 64 Ntanụ ngwanrọ Converting to decimal and then shifting the decimal point two places to the left will represent the software version0x0064 = 100 = V1.00
B9 AF MBA 16 The CRC16 checksum of the first 6 bytes of data

Maka exampLe:
Send: 00 03 80 00 00 01 AC 18
Return: 01 03 02 00 64 B9 AF
1/0x0064 100 -V1.00

Exception Function Code
When the received command is incorrect or the device is abnormal, an exception response will be returned in the following format:

laghachi: 01 85 03 02 91

Ubi Nkọwa Rịba ama
01 Device Address 0x00 indicates the broadcast address, 0x01-0xFF indicates the device address
85 Exception Function Code Exception function code = Request function code + 0x80
03 Byte Number Koodu ewepu
0291 MBA 16 The CRC16 checksum of the first 6 bytes of data

An exception code is a single-byte value that indicates the type of error. Several commonly used exception codes defined by the Modbus protocol:

Ewezuga Koodu Aha Nkọwa
0x01 Ọrụ ezighi ezi The requested function code is not supported
0x02 Adreesị data ezighi ezi The requested data address is incorrect
0x03 Uru Data ezighi ezi The requested data value or operation cannot be executed
0x04 Server Failure Server equipment failure
0x05 Nzaghachi The request has been received and is being processed
0x06 Device Busy The device is currently busy and cannot perform the requested operation

Akụrụngwa

ngosi

  • ngosi

Ngwa ngwa

  • Sscom serial port debugging assistant
  • Modbus Poll software
  • SecureCRT software

Ihe ndị metụtara ya

  • Modbus Protocol Specification
  • Modbus Series BootLoader Description

Akwụkwọ / akụrụngwa

waveshare Modbus RTU Analog Input 8CH [pdf] Akwụkwọ ntuziaka onye ọrụ
Modbus RTU Analog Input 8CH, Modbus RTU, Analog Input 8CH, Input 8CH, 8CH

Ntụaka

Hapụ ikwu

Agaghị ebipụta adreesị ozi-e gị. Akara mpaghara achọrọ akara *